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Abstract

We tackle a task where an agent learns to navigate in a 2D maze-like environment
called XWORLD. In each session, the agent perceives a sequence of raw-pixel
frames, a natural language command issued by a teacher, and a set of rewards. The
agent learns the teacher’s language from scratch in a grounded and compositional
manner, such that after training it is able to correctly execute zero-shot commands:
1) the combination of words in the command never appeared before, and/or 2) the
command contains new object concepts that are learned from another task but never
learned from navigation. Our deep framework for the agent is trained end to end:
it learns simultaneously the visual representations of the environment, the syntax
and semantics of the language, and the action module that outputs actions. The
zero-shot learning capability of our framework results from its compositionality
and modularity with parameter tying. We visualize the intermediate outputs of
the framework, demonstrating that the agent truly understands how to solve the
problem. We believe that our results provide some preliminary insights on how to
train an agent with similar abilities in a 3D environment.

1 Introduction

Navigation Train
Please move to the west of cabbage.
Please move to the east of fig.
Recognition Train
Q: What is in the southeast? A: watermelon.
Navigation Test
Please move to the west of fig.

Navigation Train
Could you please go to the coconut?
Could you please go to the apple?
Navigation Test
Could you please go to the watermelon?

? ?
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Please move to the west of cabbage.
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Navigation Test
Please move to the west of fig.

Navigation Train
Could you please go to the coconut?
Could you please go to the apple?
Navigation Test
Could you please go to the watermelon?

? ?

(a) (b)

Figure 1: Illustration of our XWORLD environ-
ment and the zero-shot navigation tasks. (a) Test
command contains an unseen word combination.
(b) Test command contains completely new object
concepts that are learned from the recognition task
in some previous sessions (a).

The development of a sophisticated language
system is a very crucial part of achieving human-
level intelligence for a machine. Language se-
mantics, when grounded in perception experi-
ence, can encode knowledge about perceiving
the world. This knowledge is transferred from
task to task, which empowers the machine with
generalization ability. It is argued that a machine
has to go through physical experience in order to
learn human-level semantics [Kiela et al., 2016],
i.e., a process of human-like language acquisi-
tion. However, current machine learning tech-
niques do not have a reasonably fast learning
rate to make this happen. Thus we choose to
model this problem in a virtual environment, as
the first step towards training a physical intelli-
gent machine.

Human generalize surprisingly well when learn-
ing new concepts and skills through natural lan-
guage instructions. We are able to apply an
existing skill to newly acquired concepts with
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little difficulty. For example, a person who has learned how to execute the command “cut X with
knife” when X equals to apple, will do correctly when X is something else he knows, e.g., pear or
orange, even though he may have never been asked to cut anything other than apple before.

This paper describes a framework that demonstrates the zero-shot learning ability of an agent
in a specific task, namely, learning to navigate in a 2D maze-like environment called XWORLD
(Figure 1). We are interested in solving a similar task that is faced by a baby who is learning to walk
and navigate, at the stage of learning his parents’ language. The parents might give some simple
navigation command consisting of only two or three words in the beginning, and gradually increase
the complexity of the command as time goes by. Meanwhile, the parents might teach the baby the
language in some other task such as object recognition. After the baby understands the language and
masters the navigation skill, he could immediately navigate to a new concept that is learned from
object recognition but never appeared in the navigation command before.

We train our baby agent across many learning sessions in XWORLD. In each session, the agent
perceives the environment through a sequence of raw-pixel images, a natural language command
issued by a teacher, and a set of rewards. The agent also occasionally receives the teacher’s questions
on object recognition whenever certain conditions are triggered. By exploring the environment, the
agent learns simultaneously the visual representations of the environment, the syntax and semantics
of the language, and how to navigate itself in the environment. The whole framework employed
by the agent is trained end to end from scratch by gradient descent. We test the agent under three
different command conditions, two of which require that the agent generalizes to interpret unseen
commands and words, and that the framework architecture is modular so that other modules such
as visual perception and action will still work properly under such circumstance. Our experiments
show that the agent performs equally well (∼ 90% average success rate) in all conditions. Moreover,
several baselines that simply learn a joint embedding for image and language yield poor results.

In summary, our main contributions are:

◦ A new navigation task that integrates both vision and language for deep reinforcement learning
(RL). Moreover, the language is not pre-parsed [Sukhbaatar et al., 2016] or -linked [Mikolov et al.,
2015, Sukhbaatar et al., 2016] to the environment. Instead, the agent has to learn everything from
scratch and ground the language in vision.

◦ Multi-task transfer learning of language for speeding up RL. Language acquisition in an auxiliary
task helps the agent understand the navigation command much faster, and thus master the navigation
skill much faster.

◦ The zero-shot learning ability by leveraging the compositionality of both the language and the
model architecture. We believe that this ability is a crucial component of human-level intelligence.

2 Related Work

Our work is inspired by the research of multiple disciplines. Our XWORLD is similar to the MazeBase
environment [Sukhbaatar et al., 2016] in that both are 2D rectangular grid world. One big difference
is that their quasi-natural language is already parsed and linked to the environment. They put more
focus on reasoning and planning but not language acquisition. On the contrary, we emphasize on how
to ground the language in vision and generalize the ability of interpreting the language. There are
several challenging 3D environments for RL such as Kempka et al. [2016] and Jaderberg et al. [2017].
The visual perception problems posed by them are much more difficult than ours. However, these
environments do not require language understanding. Our agent needs to learn to interpret different
goals from different natural language commands.

Our setting of language learning shares some similar ideas of the AI roadmap proposed by Mikolov
et al. [2015]. Like theirs, we also have a teacher in the environment that assigns tasks and rewards
to the agent. The teacher provides additional help for language learning by asking questions to the
agent in an object recognition task. Unlike their proposal of entirely using linguistic channels, our
tasks involve multiple modalities and are more close to human experience.

The importance of compositionality and modularity of a learning framework has been discussed at
length in cognitive science by Lake et al. [2016]. The compositionality of our framework is inspired
by the ideas in Neural Programmer [Neelakantan et al., 2016] and Neural Module Networks [Andreas
et al., 2016a,b]. Neural Programmer is trained with backpropagation by employing soft operations
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on databases. Neural Module Networks assemble several primitive modules according to questions
in Visual Question Answering (VQA). It depends on an external parser to convert each sentence to
one or several candidate parse trees and thus cannot be trained end to end. We adapt their primitive
modules to our framework with differentiable computation units to enable gradient calculation.

The auxiliary recognition task is essentially image VQA [Gao et al., 2015, Ren et al., 2015, Lu et al.,
2016, Andreas et al., 2016a,b, Teney and Hengel, 2016, Yang et al., 2016]. The navigation task
can also be viewed as a VQA problem if the actions are treated as answer labels. Moreover, it is a
zero-shot VQA problem (i.e., test questions containing unseen concepts) which has not been well
addressed yet.

Our language acquisition problem is closely related to some recent work on grounding language in
images and videos [Yu and Siskind, 2013, Rohrbach et al., 2016, Gao et al., 2016]. The navigation
task is also relevant to robotics navigation under natural language command [Chen and Mooney,
2011, Barrett et al., 2015]. However, they either assume annotated navigation paths in the training
data or do not ground language in vision. As XWORLD is a virtual environment, we currently do not
address mechanics problems encountered by a physical robot, but focus on its mental model building.

3 XWORLD Environment

We first briefly describe the XWORLD environment. More details are in Appendix 8.3. XWORLD is a
2D grid world (Figure 1). An agent interacts with the environment over a number of time steps T ,
with four actions: up, down, left, and right. It does so for many sessions. At the beginning of
each session, a teacher starts a timer and issues a natural language command asking the agent to reach
a location referred to by objects in the environment. There might be other objects as distractors. Thus
the agent needs to differentiate and navigate to the right location. It perceives the entire environment
through RGB pixels with an egocentric view (Figure 2c). If the agent correctly executes the command
before running out of time, it gets a positive reward R+. Whenever it hits a wall or steps on an object
that is not the target, it gets a negative reward R−w or R−o , respectively. The agent also receives a
small negative reward R−t at every step as a punishment for wandering around. After each session,
both the environment and the agent are reset randomly.

Some example commands are (the parentheses contain environment configurations that are withheld
from the agent, same below):

◦ Please navigate to the apple. (There is an apple, a banana, an orange, and a grape.)
◦ Can you move to the grid between the apple and the banana? (There is an apple and a banana.

The apple and the banana are separated by one empty grid.)
◦ Could you please go to the red apple? (There is a green apple, a red apple, and a red cherry.)

The difficulty of this navigation task is that, at the very beginning the agent knows nothing about the
language: every word appears equally meaningless. After trials and errors, it has to figure out the
language syntax and semantics in order to correctly execute the command.

We add an auxiliary recognition task to help the agent learn the language. While it is exploring the
environment, the teacher asks object-related questions whenever certain conditions are triggered (all
conditions are listed in Appendix 8.3). The answers are always single words and provided by the
teacher for supervision. Some example QA pairs are:

◦ Q:What is the object in the north? A:Banana. (The agent is by the south of a banana, by the north
of an apple, and by the west of a cucumber.)

◦ Q:Where is the banana? A:North. (The agent is by the south of a banana and the east of an apple.)
◦ Q:What is the color of the object in the west of the apple? A:Yellow. (An apple has a banana on its

west and a cucumber on its east.)

We expect the agent to learn the language much faster given this auxiliary task.

4 Compositional Framework for Zero-shot Navigation

Our framework contains four major modules: a language module, a recognition module, a visual
perception module, and an action module. The design of the framework is mostly driven by the
need of navigating to new objects (Figure 1b) that never appear in the commands (only appearing as
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Figure 2: Left: An overview of our framework. The inputs are an environment image and a sentence
(either a navigation command or a question). The output is either a navigation action or an answer to
the question, respectively. The red and blue lines in (a) indicate different tasks going through exactly
the same process. Right: The pipeline of the programmer of the language module. The input is a
sequence of word embeddings. The output is the attention map at the final step.

answers in the recognition module but never in the language module Figure 2a). We see three crucial
properties for the framework:

◦ The language module must be compositional. It needs to process a sentence while preserving the
(major) sentence structure. One example would be a parser that outputs a parse tree.
◦ Inductive bias [Lake et al., 2016] must be learned from existing sentences. The language module

knows how to parse a sentence with a known structure if a word position is filled with a completely
new word.

◦ Language grounding (Figure 2a) and recognition (Figure 2b) have to be reduced to (approximately)
the same problem. This ensures that language grounding trained on n − 1 words still works
properly on the nth word which is trained from the recognition.

There is no existing framework for image captioning or VQA exhibits all such properties. Specifically,
it is difficult, if not impossible, for a simple (gated) Recurrent Neural Network (RNN) to satisfy the
first two properties when a sentence has a rich structure. We show that word attention [Bahdanau
et al., 2015], visual attention, and external memory [Graves et al., 2014] are the keys.

Recognition We assume a feature map F ∈ RD×N with D channels and a spatial dimension of
N . Consider classifying the feature fn ∈ RD at location n on the map, into m out of M words
with probability P (m|fn) = SoftmaxM (sᵀmfn), where sᵀm is the mth row of the Softmax matrix
S ∈ RM×D. Also consider grounding (i.e., computing attention) the mth word em ∈ RD in F at
location n by A(n|em) = SoftmaxN (fᵀnem) which produces a sum-to-one attention map. Our
observation is the similarity between P (m|fn) and A(n|em): both reply on dot product computation
(sᵀf or fᵀe). Inspired by the transposed weight sharing scheme [Mao et al., 2015], we set S = Eᵀ

where E is the word embedding table. As a result, sᵀf and fᵀe now compute the same quantity,
namely, the similarity between word embedding and feature. Therefore, both max

E,F
P (m|fn) and

max
E,F

A(n|em) are optimized towards

em ∝
{

fn C(fn) = m
−fn C(fn) 6= m

,

where C denotes the correct label of the feature.

Our recognition module assumes an attention map a ∈ RN from the language module and a feature
map F ∈ RD×N from the visual perception module. The attention map highlights the interesting
region according to the teacher’s question. We extract a feature by weighted averaging the feature
map with the attention map: f̃ = Fa. When this feature is classified, the Softmax could potentially
output any word such as object name, color, or location. Thus the feature map F has to contain
both visual and spatial information. Suppose the teacher asks two questions that result in the same
attention map: “Where is the apple?” and “What is the object on the west?”. In both cases, the
attention map highlights the same region on the agent’s west. As a result, the extracted feature f̃ will
be the same for both questions, although the answers should be different (one is west and the other
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is apple). To resolve this conflict, the question intention has to be understood. The agent needs to
understand that the first question asks the location while the second question asks the object name.
We use a simple gated RNN [Cho et al., 2014] to encode and summarize a question to generate an
embedding mask xq ∈ [0, 1]D. Then the mask and the feature is element-wise multiplied to yield a
masked feature 1 f∗ = f̃ ◦ xq which is used for the final classification (Figure 2b). The details of
generating the embedding mask are shown in Figure 5a Appendix 8.5.

Visual Perception The visual perception module receives an environment image and outputs a
feature map F ∈ RD×N and an environment map g ∈ RN (Figure 2c). We feed the environment
image into a Convolutional Neural Network (CNN) whose output Fv ∈ RD′×N (D′ < D) has
the same spatial dimension with the number of grids N in the original image, where each pixel of
Fv corresponds to a grid. One can instead segment object boundaries and average features inside
each object. We leave such to future work. We further convolve Fv with a 1 × 1 filter to get the
environment map g. This map is input to the action module together with the navigation attention
map a. We expect the environment map to encode the locations of all objects and walls so that
the agent knows which locations to avoid. The feature map Fv contains only visual information.
We stack it onto another feature map Fs ∈ R(D−D′)×N that represents spatial information in the
egocentric view (F = [Fv,Fs]). This spatial feature map is a parameter matrix that needs to be
learned by the agent.

Language A sentence is compositional by nature. Understanding its structure is crucial for a
correct interpretation. For example, the question “What is in the west of the apple?” implies
operations Describe(F,Transform[west](Find[apple](F))). If the word west is replaced with east,
the interpretation result would be much different. It is difficult for a simple (gated) RNN to output
a compact embedding that encodes all such structural information, as the embedding is largely
determined by the majority of the sentence. Thus our language module should also be compositional,
namely, it knows how to (implicitly) assemble itself differently according to different input sentences.

Commands and questions are processed by the same language module (Figure 2a). The result is an
attention map a ∈ RN that highlights interesting regions. For navigation, the regions indicate the
target locations. For recognition, they indicate which features on the feature map to be recognized.
We treat each sentence as a program command. The core of our language module is a differentiable
programmer that executes a command in several steps. At each step the programmer has access to
the feature map F and the intermediate result in the previous step. By attending to different words,
the programmer is able to assemble a latent network across steps. At the final step the programmer
outputs an attention map a (Figure 2 Right). Below we describe the details of the programmer.

A sentence of length L is first converted to a sequence of word embeddings el by looking up
the embedding table E ∈ RD×M . The embeddings are then projected2 to syntax embeddings
and functionality embeddings efl (Figure 4 Appendix 8.5). The syntax embeddings are fed into a
Bidirectional RNN [Schuster and Paliwal, 1997] to obtain sentence context vectors ecl . The last
forward state and the first backward state are concatenated and projected to a booting vector (Figure 6
Appendix 8.5). The programmer controller, designed as a gated RNN [Cho et al., 2014], is initialized
with this booting vector. Given a fixed number of programming steps S, at each step s the controller
computes the attention for each word l from its sentence context vector ecl :

cs,l = SoftmaxL (CosSim (hs, g(Wecl + b))) ,

CosSim(z, z′) = zᵀz′

‖z‖‖z′‖ ,

where W and b are projection parameters, hs is the RNN state, and g is the activation function.
Then the word embeddings, the context vectors, and the functionality embeddings are all weighted
averaged by the attention: ẽs =

∑
l cs,l · el, ẽcs =

∑
l cs,l · ecl , ẽfs =

∑
l cs,l · e

f
l . The averaged

context vector ẽcs is fed back to the controller to tell it how to update its hidden state.

The averaged word embedding ẽs represents what to be grounded at step s. Similar to recognition, we
generate an embedding mask xws ∈ [0, 1]D as a projection of the averaged functionality embedding
ẽfs (Figure 5b Appendix 8.5), for computing the masked embedding e∗s = ẽs ◦ xws . The masked
embedding is convolved as a 1 × 1 filter with the feature map to obtain an egocentric attention

1The embedding mask should be really applied to the embedding instead of the feature. However, because
the classification relies on computing dot products of the two, we have fᵀ(e ◦ x) = (f ◦ x)ᵀe.

2We use “projection” to denote the process of going through one or more fully-connected (FC) layers.
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map a′′s = Softmax(F ∗ e∗s). Assume that in the previous step we have cached an attention map
a′s−1 which is essentially a one-slot external memory. The programmer updates it by convolution
as = a′′s ∗a′s−1. This convolution is used to approximate the 2D translation of spatial attention, given
that the attention map of a location word is egocentric and needs to be imposed on object attention.
Then the programmer caches a new attention map by a convex combination of the previously cached
one and the current output: a′s = (1−σ)a′s−1 +σas, where the Sigmoid gate σ is a scalar projection
of the current controller state hs (Figure 2 Right). At the beginning of programming, we set a′0 = i
where i is a map of which only the center pixel is one and the rest are zeros. The final output attention
map a is set to aS .

Compared to Neural Module Networks [Andreas et al., 2016a], our soft word attention implicitly
supports the CombineAnd and CombineOr operations by attending to multiple words simultaneously.
The embedding mask supports the DescribeColor, DescribeLocation, and DescribeName op-
erations by masking different entries of embeddings according to different questions. As a result, we
end up with a simple yet effective implementation of the network modularity.

Action The action module (Figure 2) assumes an attention map a from the language module and an
environment map g from the visual perception module. These two maps contain all the information
needed by the agent to move itself in the environment. We stack the two maps and input them to a
two-layer CNN whose output is projected to a state vector q that summarizes the environment. The
state vector is further projected to a distribution π(q, y) over the four actions. At each time step, the
agent takes action y with a probability of α · 0.25 + (1− α) · π(q, y), where α is the rate of random
exploration. The state vector is also projected to a scalar V (q) as the approximate value function.

5 Training

Our training objective contains two sub-objectives, one for navigation and the other for recognition

L(θ) = LRL(θ) + LSL(θ),
where θ are the joint parameters of the framework. Most parameters are shared between the two
tasks 3. We compute the recognition loss LSL as the multi-class cross entropy with the gradients

∇θLSL(θ) = EQ [−∇θ logPθ(m|f∗θ )] ,
where EQ is the expectation over all the questions asked by the teacher in all training sessions, m is
the correct answer to each question, and f∗θ is the corresponding feature. We compute the navigation
loss LRL(θ) as the negative expected reward −Eπθ

[r] the agent receives by following its policy πθ.
With the Actor-Critic (AC) algorithm [Sutton and Barto, 1998], we have the approximate gradients

∇θLRL(θ) = −Eπθ
[(∇θ log πθ(qθ, y) +∇θVθ(qθ)) (r + γVθ−(qθ−)− Vθ(qθ))]

where θ− are the target parameters that are periodically (every J minibatches) copied from θ, r is the
immediate reward, γ is the discount factor, qθ− is the next state after taking action y at state qθ, and
πθ and Vθ are the policy and value output by the action module. Since the expectations EQ and Eπθ

are different, we optimize the two sub-objectives separately over the same number of minibatches.
For effective training, we employ Curriculum Learning [Bengio et al., 2009] and Experience Replay
[Mnih et al., 2015] with Prioritized Sampling [Schaul et al., 2016] (Appendix 8.4).

6 Experiments

We use Adagrad [Duchi et al., 2011] with a learning rate of 10−5 for Stochastic Gradient Descent
(SGD). In all experiments, we set the batch size to 16 and train 200k batches. The target parameters
θ− are updated every J = 2k batches. All the parameters have a default weight decay equal to 10−4×
batch size. For each layer, by default its parameters have zero mean and a standard deviation of 1/

√
N ,

where N is the number of parameters of that layer. The agent has 500k exploration steps in total, and
the exploration rate α decreases linearly from 1 to 0. We fix the number of programming steps S as
3. We train each model with 4 random initializations. The whole framework is implemented with
PaddlePaddle 4 and trained end to end. More implementation details are described in Appendix 8.1.

3In all the figures of our framework, components with the same name share the same set of parameters.
4https://github.com/PaddlePaddle/Paddle
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Figure 3: Training reward curves. The shown reward is the accumulated discounted reward per
session, averaged every 8k training examples. The shaded area of each curve denotes the variance
among 4 random initializations. (a) Curves of our framework under different command conditions.
(b) Curves of the four baselines under the Standard command condition.

Zero-shot Navigation Our primary question is whether the agent has the zero-shot navigation ability
of executing previously unseen commands. We setup four command conditions for training the agent.

◦ Standard The training command set has the same distribution with the test command set.
◦ NC Some word combinations are excluded from the training command set, even though all the

words are in it. We specifically consider three types of word combinations: (object, location),
(object, color), and (object, object). We enumerate all combinations for each type and randomly
hold out 10% from the teacher in navigation.

◦ NWNav&NWNavRec Some object words are excluded from navigation training, and are trained
only in recognition and tested in navigation as new concepts. NWNavRec guarantees that the new
words will not appear in questions but only in answers while NWNav does not. We randomly hold
out 10% of the object words.

Ours/SA Standard NC NWNav NWNavRec
nav_obj 94.6/91.6 94.6/91.8 94.6/91.7 94.2/83.4
nav_col_obj 94.3/88.8 93.2/89.6 94.1/89.6 94.0/83.4
nav_nr_obj 93.1/74.5 92.7/74.2 93.0/77.2 93.0/70.8
nav_bw_obj 73.9/69.3 75.3/70.1 74.5/70.8 73.7/69.3
*nav_obj N/A 93.8/90.6 94.5/88.3 94.7/4.1
*nav_col_obj N/A 93.1/87.3 93.8/81.8 92.8/7.0
*nav_nr_obj N/A 92.6/71.6 92.7/56.6 87.1/25.7
*nav_bw_obj N/A 76.3/70.2 74.5/66.1 70.4/59.7

(a)
Ours SimpleAttention NoTransShare VIS-LSTM Multimodal
89.2 80.0 6.9 22.4 22.3

(b)

Table 1: Success rates (%). (a) Breakdown
rates of our framework and SimpleAtten-
tion (SA) on the four subtasks under differ-
ent training command conditions (columns).
The last four rows show the rates of the test
sessions that contain commands not seen in
training. (b) Overall rates of all the methods
under the Standard command condition.

Our framework is trained under each condition with
the same hyperparameters. For testing, we put the
held-out combinations/words back to the commands
(i.e., Standard condition) and test 10k sessions in total
over four navigation subtasks nav_obj, nav_col_obj,
nav_nr_obj, and nav_bw_obj (Appendix 8.3). We
compute the success rates where success means that
the agent reaches the target location in time in a ses-
sion. Figure 3a shows the training reward curves and
Table 1a contains the success rates. The curves are
close to each other, which is expected because a 10%
reduction of the commands barely changes the learning
difficulty. We get almost the same success rates for all
the conditions, and obtain high zero-shot success rates.
The results of NWNavRec show that although some new
object concepts are learned from a completely different
problem, they can be tested on navigation without any
model retraining or finetuning.

Baselines To demonstrate that our framework architec-
ture is necessary, we also test four baselines:

◦ SimpleAttention We modify our framework by replacing the programmer with a simple attention
model. Given a sentence, we use an RNN to output an embedding which is convolved as a 3× 3
filter with the visual feature map to get an attention map. The rest of the framework is unchanged
(Figure 7 Appendix 8.5). This baseline is an ablation to show the necessity of the programmer.
◦ NoTransShare We do not tie the word embedding table E to the transposed Softmax matrix Sᵀ. In

this case, language grounding and recognition classification are not guaranteed to be the same. This
baseline is an ablation to show the impact of the transposed sharing on the training convergence.
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◦ VIS-LSTM Following Ren et al. [2015], we use CNN to get an image embedding which is then
projected to the word embedding space and used as the first word of the sentence. The sentence goes
through an RNN whose last state is used for navigation and recognition (Figure 8 Appendix 8.5).

◦ Multimodal We implement a multimodal framework [Mao et al., 2015]. The framework uses CNN
to get an image embedding and RNN to get a sentence embedding. Then the two embeddings are
projected to a common feature space for navigation and recognition (Figure 9 Appendix 8.5).

The last three baselines are trained only under the Standard command condition, where their perfor-
mance is already very poor. SimpleAttention is trained under all the four command conditions. Again
we test these baselines for 10k sessions. The training reward curves and the success rates are shown in
Figure 3b and Table 1, respectively. VIS-LSTM and Multimodal have poor results because they do not
ground language in vision. Surprisingly, NoTransShare converges much slower than our framework
does. One possible reason is that the correct behavior of the language module is hard to be found by
SGD if no constraint on word embedding is imposed. Although SimpleAttention is able to perform
well, without word-attention programming, its ability of sentence understanding is limited. More
importantly, Table 1a shows that it almost fails on zero-shot commands (especially on NWNavRec).
Interestingly, in nav_bw_obj it has a much higher zero-shot success rate than in the other subtasks.
The reason is that with the 3× 3 filter, it always highlights the location between two objects without
detecting their classes, because usually there is only one qualified pair of objects in the environment
for nav_bw_obj. In such case, SimpleAttention does not really generalize to unseen commands.

Visualization and Analysis Our framework produces intermediate results that can be easily visu-
alized and analyzed. One example has been shown in Figure 2, where the environment map is
produced by a trained visual perception module. It detects exactly all the obstacles and goals. The
map constitutes the learned prior knowledge for navigation: all walls and goals should be avoided by
default because they incur negative rewards. This prior, combined with the attention map produced
for a command, contains all information the agent needs to navigate. The attention maps are usually
very precise (Figure 10 Appendix 8.5), with some rare cases in which there are flaws, e.g., when
the agent needs to navigate between two objects. This is due to our simplified assumption on 2D
geometric translation: the attention map of a location word is treated as a filter and the translation is
modeled as convolution. This results in attention diffusion in the above case. To address this issue,
more complicated transformation can be used (e.g., FC layers).

We also visualize the programming process. We observe that the programmer is able to shift its
focus across steps (Figure 11 Appendix 8.5). In the first example, the programmer essentially
does Transform[southeast](Find[cabbage](F)). In the second example, it essentially performs
Transform[between](CombineOr(Find[apple](F), Find[coconut](F))).

We find the attention and environment maps very reliable through visualization. This is verified by
the ∼100% QA accuracy in recognition. However, in Table 1 the best success rate is still ∼ 5% away
from the perfect. Further analysis reveals that the agent tends to stuck in loop if the target location is
behind a long wall, although it has a certain chance to bypass it (Figure 12 Appendix 8.5). Thus we
believe that the discrepancy between the good map quality and the imperfect performance results
from our action module. Currently the action module learns a direct mapping from an environment
state to an action. There is no support for either history remembering or route planning [Tamar et al.,
2016]. Since our focus here is zero-shot navigation, we leave such improvements to future work.

7 Conclusion
We have demonstrated an end-to-end compositional framework for a virtual agent to generalize an
existing skill to new concepts without model retraining or finetuing. Such generalization is made
possible by reusing knowledge that is learned in other tasks and encoded by language. By assembling
words in different ways, the agent is able to tackle new tasks while exploiting existing knowledge.
Such ability is crucial for fast learning and good generalization. We reflect these important ideas in
the design of our framework and apply it to a concrete example: zero-shot navigation in XWORLD.
Our framework is just one possible implementation. Some components of the framework can still
be improved. Our claim is not that an intelligent agent must have a mental model as the presented
one, but it has to possess several crucial properties discussed in Section 1 and Section 4. Currently
the agent explores in a 2D environment. In the future, we plan to migrate the agent to a 3D world
like Malmo [Johnson et al., 2016]. There will be several new challenges, e.g., visual perception
and geometric transformation will be more difficult to model. We hope that the current framework
provides some preliminary insights on how to train a similar agent in a 3D environment.
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8 Appendix

8.1 Implementation Details

The agent at each time step receives a 156× 156 RGB image. This image is egocentric and includes
both the environment and the black padding region. The agent processes the input image with a
CNN that has four convolutional layers: (3, 3, 64), (2, 2, 64), (2, 2, 512), (1, 1, 512), where (x, y, z)
represents z x× x filters with stride y. All the four layers have the ReLU activation function. The
output is the visual feature map with 512 channels. We stack it along the channel dimension with
another parametric spatial feature map of the same sizes. This spatial feature map is initialized with
zero mean and standard deviation (Figure 2).

The agent also receives a navigation command at the beginning of a session. The same command is
repeated until the end of the session. The agent may or may not receive a question at every time step.
The dimensions of the word embedding, syntax embedding, and functionality embedding are 1024,
128, and 128, respectively. The word embedding table is initialized with zero mean and a standard
deviation of 1. The hidden FC layers for computing the syntax and functionality embeddings have
512 units (Figure 4). The bidirectional RNN for computing sentence contexts has a state size of 128
in both directions. The output controller booting vector and sentence context also have a length of
128. The state size of the controller RNN is equal to the length of the booting vector (Figure 2 Right).
The hidden FC layer for converting a functionality embedding to an embedding mask has a size of
128. The RNN used for summarizing the question intention has 128 states (Figure 5). All FC layers
and RNN states in the language and recognition module use Tanh as the activation function. The only
exception is the FC layer that outputs the embedding mask (Sigmoid).

In the action module, the CNN for processing the attention map and the environment map has two
convolutional layers (3, 1, 64) and (3, 1, 4), both with paddings of 1. They are followed by three FC
layers that all have 512 units. All five layers use the ReLU activation function.

8.2 Baseline Models

The language module of SimpleAttention sets the word embedding size to 1024. The RNN has the
same size with the word embedding. The FC layer that produces the 3 × 3 filter has an output
size of 4608 which is 9 times the channel number of the visual feature map. The rest of the layer
configuration is the same with our framework. VIS-LSTM has a CNN with four convolutional layers
(3, 2, 64), (3, 2, 64), (3, 2, 128), and (3, 1, 128). This is followed by three FC layers with size 1024.
The word embedding and the RNN both have sizes of 1024. The RNN output goes through three
FC hidden layers of size 512 either for recognition or navigation. The layer size configuration of
Multimodal is the same with VIS-LSTM. The outputs of all layers here are ReLU activated except for
the last FC layer of the CNN used by VIS-LSTM. The activation is instead linear so that the output
image embedding is in the same space with the word embedding. Except for SimpleAttention, we do
not tie the transposed Softmax matrix to the embedding table.

8.3 XWORLD Setup

We configure square environments with sizes ranging from 3 to 7. We fix the size of the environment
image by padding walls for smaller environments. Different sessions may have different map sizes.
In each session,

◦ The number of time steps T is four times the map size.
◦ The number of objects on the map is from 1 to 3.
◦ The number of wall grids on the map is from 0 to 10.
◦ The positive reward R+ when the agent reaches the correct location is set to 1. The negative

rewards R−w for hitting walls and R−o for stepping on non-target objects are set to −0.2 and −1,
respectively. The time step penalty R−t is set to −0.1.

The teacher has a vocabulary size of 104, including 2 punctuation marks. There are 9 locations, 4
colors, and 40 distinct object classes. Each object class has 2.85 object instances on average. Every
time the environment is reset, a number of object classes are randomly sampled and an object instance
is randomly sampled for each class. There are in total 16 types of sentences the teacher can speak,
including 4 types of navigation commands and 12 types of recognition questions. Each sentence type
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has multiple non-recursive natural-language templates, and corresponds to a subtask the agent must
learn to perform. In total there are 256,832 distinct sentences with 92,442 for the navigation task and
164,390 for the recognition task. The sentence length ranges from 2 to 12.

The object, location, and color words of the teacher’s language are listed below. These are the
content words with actual meanings that can be grounded in the environment. All the other words are
treated as grammatical words whose embeddings are only for interpreting sentence structures. The
differentiation between content and grammatical words is automatically learned by the agent based
on the teacher’s language and the environment. All words have the same form of representation.

Object Location Color Other

apple, avocado, banana, blueberry, butterfly, east, west, green, ?, ., and, block, by, can, color, could,
cabbage, cat, cherry, circle, coconut, north, south, red, destination, direction, does, find, go,
cucumber, deer, dog, elephant, fig, northeast, northwest, blue, goal, grid, have, identify, in, is, locate,
fish, frog, grape, hedgehog, ladybug, southeast, southwest, yellow located, location, me, move, name,
lemon, lion, monkey, octopus, orange, between navigate, near, nothing, object, of, on,
owl, panda, penguin, pineapple, pumpkin, one, OOV, please, property, reach, say,
rabbit, snake, square, squirrel, star, side, target, tell, the, thing, three, to,
strawberry, triangle, turkey, turtle, watermelon two, what, where, which, will, you, your

The sentence types that the teacher can speak are listed below. Each sentence type corresponds to a
subtask. The triggering condition describes when the teacher says that type of sentences. Besides
the conditions shown, an extra condition for navigation commands is that the target location must be
reachable from the current agent location. An extra condition for color-related questions is that the
object color must be one of the four defined colors, and objects with other colors will be ignored in
these questions. If at a time step there are multiple conditions triggered, we randomly sample one
sentence type for navigation and another for recognition. After the sentence type is sampled, we
generate the command or question according to the corresponding sentence templates.

Sentence Type Example Triggering Condition
(Subtask)

nav_obj Please go to the apple. [C0] Beginning of a session. &
[C1] The referred object has a unique
name.

nav_col_obj Could you please move to the red apple? [C0] & [C2] There are multiple objects
that either have the same name
but different colors, or have different
names but the same color.

nav_nr_obj The north of the apple is your destination. [C0] & [C1]
nav_bw_obj Navigate to the grid between apple and [C0] & [C3] Both referred objects have

banana please. unique names and are separated by
one grid.

rec_col2obj What is the red object? [C4] There is only one object that
has the referred color.

rec_obj2col What is the color of the apple? [C1]
rec_loc2obj Please tell the name of the object in the south. [C5] The agent is near the referred

object.
rec_obj2loc What is the location of the apple? [C1] & [C5]
rec_loc2col What color does the object in the east have? [C5]
rec_col2loc Where is the red object located? [C4] & [C5]
rec_loc_obj2obj Identify the object which is in the east of the apple. [C1] & [C6] The referred object is

near another object
rec_loc_obj2col What is the color of the east to the apple? [C1] & [C6]
rec_col_obj2loc Where is the red apple? [C2] & [C5]
rec_bw_obj2obj What is the object between apple and banana? [C7] Both referred objects have

unique names and are separated by
one object.

rec_bw_obj2loc Where is the object between apple and banana? [C7] & [C8] The agent is near the
object in the middle.

rec_bw_obj2col What is the color of the object between apple [C7]
and banana?
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8.4 Experience Replay and Curriculum Learning

We employ Experience Replay [Mnih et al., 2015] for training both the navigation and recognition
tasks. The environment inputs, rewards, and the actions taken by the agent at the most recent 10k
time steps are stored in a replay buffer. During training, every time two minibatches of the same
number of experiences are sampled from the buffer, one for computing ∇θLSL(θ) and the other
for computing ∇θLRL(θ). For the former, only individual experiences are sampled. We uniformly
sample experiences from a subset of the buffer which contains the teacher’s questions. For the latter,
we need to sample transitions (i.e., pairs of experiences) so that TD error can be computed. We
sample from the entire buffer using the Rank-based Sampler [Schaul et al., 2016] which has proven
to increase the learning efficiency by prioritizing rare experiences in the buffer.

Because in the beginning the language is quite ambiguous, it is difficult for the agent to start learning
with a complex environment setup. Thus we exploit Curriculum Learning [Bengio et al., 2009] to
gradually increase the environment complexity. We gradually change the following things linearly in
proportional to min(1, G′ / G), where G′ is the number of sessions so far and G is the number of
curriculum sessions:

◦ The number of grids of the environment.
◦ The number of objects in the environment.
◦ The number of wall grids.
◦ The number of possible object classes that can appear in the environment.
◦ The length of a navigation command or a recognition question.

We find that this curriculum is crucial for efficient learning, because in the early phase the agent is
able to quickly master the meanings of the location and color words given only small ambiguity. After
this, these words are used to guide the optimization when more and more new sentence structures
and objects are added. In the experiments, we set G = 10k during training while do not use any
curriculum during test (maximal difficulty).
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8.5 Figures
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Figure 5: Details of computing the embedding masks. (a) The pipeline of Question Intention in
Figure 2b, which computes an embedding mask according to a question. (b) The two FC layers used
by Mask Computation in both (a) and Figure 2 Right. They project a functionality embedding to a
mask.
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Figure 6: A Bidirectional RNN that receives a sequence of syntax embeddings, and outputs a sequence
of sentence contexts and a controller booting vector.
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Figure 7: The pipeline of the language module of the SimpleAttention baseline. An RNN processes
the input sentence and outputs a 3× 3 filter which is convolved with the visual feature map generated
by the visual perception module. Other modules are the same with our framework.

Image

Embedding

“Go to the apple .”

RNN
Last

CNN

FC layers
Recognition 

Softmax

Navigation 
Softmax

Figure 8: Our adapted version of the VIS-LSTM model [Ren et al., 2015]. The framework treats the
projected image embedding as the first word of the sentence. Navigation and recognition only differ
in the last several FC layers.
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Figure 9: A multimodal framework adapted from the one in Mao et al. [2015]. The image and the
sentence are summarized by a CNN and an RNN respectively. Their embeddings are concatenated
and projected to the same space. Navigation and recognition only differ in the last several FC layers.
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Watermelon is the Reach the grid between Red ladybug is the Can you go to the
destination. grape and deer. target. south of the elephant?

Figure 10: Examples of attention maps in different sessions. Top: the navigation commands. Middle:
the current environment images. Bottom: the corresponding attention maps output by the language
module. Note that attention maps are all egocentric: the map center is the agent’s location.

Navigate  to  southeast  of   cabbage   . The  grid   between  apple  and coconut .

Figure 11: Illustration of the language programming process on two examples. Given the current
environment image and a navigation command, the programmer generates an attention map in three
steps. At each step the programmer focuses on a different portion of the sentence. The word attention
is visualized by a color strip where brighter portion means more attention. On the left of each color
strip is the corresponding attention map combining the current attention and the previously cached
one (Figure 2 Right). The last attention map is used as the output of the programmer.

Could you please go to the dog? Please reach south of the cucumber.

Figure 12: Examples of bypassing long walls. For each path, only three key steps are shown. (Green
circles indicate successes.)
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